II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 ELECTRICAL ENGINEERING (MECHANICAL ENGINEERING)
 (MECHATRONICS)

Time: 3hours
Max.Marks:75
Answer any FIVE questions
All questions carry equal marks
1.a) Determine the current delivered by the Source in the Circuit shown below.

b) Determine the current through each resistor in the circuit shown below.

2.a) Write the node voltage equations and determine the current in each branch for the network shown below.

b) Use Thevenin's theorem to find current through 10Ω resister.

3.a) Define RMS value, Average value, Form factor and Peak factor.
b) For the circuit shown below, find effective voltages across resistance, inductance, and also determine the phase angle.

4.a) Explain the principle and operation of a transformer.
b) Explain how to determine the efficiency, regulation and equivalent circuit parameters of single phase transformer by conducting O.C. and S.C. tests.
5.a) Explain the different methods of excitation of dc generators with suitable diagrams.
b) A 4-pole, dc generator has a lap-wound armature having 50 slots with 18 conductors. The flux per pole is 0.005 wb . Determine the induced emf at a speed of 900 rpm .
6.a) Explain the working principle of a DC motor.
b) A 230V DC Shunt motor takes a no-load current of 2.5 A . The armature and field resistances are 0.5Ω and 150Ω respectively. Calculate the efficiency of the motor, when on full load it takes a current of 150 A .
7.a) Explain the Torque - speed characteristics of 3ϕ Induction Motor.
b) The power input to the roter of a $440 \mathrm{~V}, 50 \mathrm{~Hz}$, 4-pole, three phase induction motor 25 kw and speed is 960 rpm . Calculate the Roter Copper losses and the mechanical power developed.
8.a) Explain how the measuring instruments are classified.
b) Explain the construction and operating principle of PMMC instruments.

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
ELECTRICAL ENGINEERING
(MECHANICAL ENGINEERING)
(MECHATRONICS)
Time: 3hours
Max.Marks:75
Answer any FIVE questions All questions carry equal marks
1.a) For the circuit shown in figure. Find the total resistance and current ' I '.

b) Using network reduction, find the voltage ' V ' in the below circuit.

2.a) Find R_{ab} in the below circuit, when all the resister are having equal values.

b) Find the voltages across the two current sources in the below circuit using Superposition Theorem.

3.a) Find the average and effective values of the periodic wave form shown below.

b) In the circuit shown below, determine total impedance, current, phase angle and voltage across each element.
[7+8]

4.a) Deduce e. m. f. equation of a transformer.
b) The maximum efficiency of a $400 \mathrm{KVA}, 3300 / 500 \mathrm{~V}, 60 \mathrm{~Hz}, 1 \phi$ transformer is 97% and occurs at $1 / 4^{\text {th }}$ full-load. If the impedance is 10%. Calculate the regulation at fullload and 0.8 p . f. lagging.
5.a) Derive the condition for the max efficiency of dc generator.
b) A $20 \mathrm{kw}, 220 \mathrm{~V}$, dc Shunt generator has armature \& field resistance are 0.05Ω and 150Ω respectively. Determine the total armature power developed when it is delivering an output of 20 W .
6.a) Derive the Torque expression of a DC motor.
b) A 240 V , Dc Shunt motor takes a no-load current of 5A. Find its efficiency when it delivers a line current of 50 A on full load and runs as a generator. $\mathrm{R}_{\mathrm{a}}=0.2 \Omega$ and $R_{f}=150 \Omega$.
7.a) Draw and explain Slip-Torque characteristics of a three phase induction motor.
b) A 3ϕ Induction motor has a starting torque of 1.25 times its full load torque and its maximum torque is 2.5 times of full load torque. Neglecting Stator resistance and rotational losses. Find
i) Slip at full load
ii) Slip at max torque
8.a) What are the essential features of measuring instruments.
b) Explain the construction and principle of operation of Moving Iron Ammeters. [7+8]

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 ELECTRICAL ENGINEERING
 (MECHANICAL ENGINEERING)
 (MECHATRONICS)

Time: 3hours
Max.Marks:75

Answer any FIVE questions
 All questions carry equal marks

1.a) Find the current I in the below circuit.

b) The current in the 5Ω resistance of the circuit shown below is 5 A . Find the current in the 10Ω resistor. Calculate the power absorbed by the 5Ω resister.

2.a) Determine the equivalent resistance across ' AB ' terminals.

b) State and explain maximum power transfer theorem.
3.a) In the below circuit, calculate the supply current, overall power factor and the total power supplied to the circuit.

b) Find the form factor of the wave form shown below.

4.a) Deduce the expression for regulation of a single phase transformer.
b) A single phase transformer with a ratio of $240 \mathrm{~V} / 110 \mathrm{~V}$ takes a no load current of 5 A at 0.3 p. f. lagging. If secondary supplies a current of 95 A at 0.88 p.f. lagging. Estimate the current taken by the primary.
5.a) Explain the construction features of a dc machine with the help of neat diagrams.
b) A 4 pole dc generator has 60 slots and 4 conductors per slot. The flux per pole is 0.03 Wb and speed is 900 rpm . Find the emf generated, if machine is
i) Lap wound
ii) Wave wound.
6.a) A 240 V DC series motor runs at 900 rpm taking a current of 30 A . Calculate the speed if the load is reduced so that the motor is taking 20A. Total resistance of armature and field is 0.75Ω.
b) Explain the various characteristics of DC shunt and series motors.
7.a) Explain the construction and working principle of 3ϕ induction motor.
b) A $3 \phi, 6-$ pole, 50 Hz induction motor takes a power input of 30 Kw at full load speed of 890 rmp . The total stator losses are 1500 W and friction and wind age losses are 1 Kw . Calculate
i) Slip
ii) Shaft power
iii) Efficiency.
8.a) Explain the operation of the attraction type moving iron instruments?
b) What are the merits of PMMC instruments?

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 ELECTRICAL ENGINEERING
 (MECHANICAL ENGINEERING)
 (MECHATRONICS)

Time: 3hours
Max.Marks:75
Answer any FIVE questions
All questions carry equal marks
1.a) Define kirchhoff's laws and ohm's law.
b) In the circuit shown below, what are the values of R_{1} and R_{2}, when current through R_{1} is $2 A$ and R_{2} is 7A? What is the value of R_{1} when the current flowing through R_{2} is zero.

2.a) State and explain Thevinen's \& Norton's theorems.
b) Use nodal analysis to find V_{1} and V_{2} in the below circuit.

3.a) In a series circuit shown in below Fig. Calculate the equivalent impedance, current in the circuit and the power factor.

b) Calculate the RMS value of the voltage wave form shown below.

4.a) Explain transformer as load with phasor diagram.
b) A $25 \mathrm{KVA}, 2500 / 250 \mathrm{~V}$, single phase transformer gave the following test results.
$\begin{array}{llll}\text { O.C. test: } & 250 \mathrm{~V}, & 1.2 \mathrm{~A}, & 100 \mathrm{~W} \\ \text { S.C }\end{array}$
S.C test: $100 \mathrm{~V} \quad 8.7 \mathrm{~A}, 340 \mathrm{~W}$.

Compute the equivalent circuit referred to HV and LV sides respectively.
5.a) Derive the emf equation of a dc generator.
b) A short shunt Compound generator has armature, series field and shunt field resistances $0.03 \Omega, 0.05 \Omega$ and 250Ω respectively. If supply load current is 25 A at a rated voltage of 220 V . Find the emf generated and armature current.
6.a) Deduce the condition for maximum efficiency of a DC motor.
b) A 250 V DC shunt motor take a no-load current of 6 A . Find its efficiency when it takes a line current of 20 A when runs as a motor. The armature and field resistances are 0.5Ω and 200Ω respectively.
[7+8]
7.a) Explain the principle of operation of a 3ϕ induction motor.
b) Derive the torque equation of a 3ϕ induction motor.
8.a) Explain the various possible torques in a measuring instruments.
b) Explain the operation of the repulsion type moving iron instrument.

